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Abstract: A dispersive optical model analysis of the proton scattering by titanium element nucleus and its natural isotopes is 

applied to the construction of the complex single-particle mean field starting from Fermi energy value to the energy value 

100MeV and for constant input values of the parameters of this mean field. This mean field is called (coulomb-nuclear) 

interference potential, that contains (spin-orbit) coulomb term. The results according to DOMACNIP program that has been 

designed for that purpose would contain: continuous energy variation of the depths of the real and imaginary parts of the mean 

field, which are connected by dispersion relations were compared with these resulting from global parameterization of the 

optical model potential. In addition to continuous energy variation of the real radius parameter of the Wood-Saxon 

approximation to the mean field potential with its Hatree-Fock approximation of the nonlocal potential. Consequently, our 

results for the continuous energy variations of the predicted total reaction cross section within the energy range (1-100) MeV, 

and with calculation step of the pervious range whose magnitude (1 MeV), differential cross sections, Ratio of the differential 

elastic scattering cross section to Rutherford cross section, polarization for selected energy showed the excellent agreement 

with available experimental data and with these resulted from global parameterization of the optical model potential. 

Keywords: Dispersive Optical Model Analysis (DOMA), (Coulomb-Nuclear) Interference Potential (CNIP),  

Dispersion Relations (DR), Mean Field, Fermi Energy, Cross Section, Polarization 

 

1. Introduction 

The nuclear optical model potential describes the motion of 

one nucleon, bound or unbound, in the mean field of all the 

other nucleons comprising the nucleus. The field due to the 

sum of all the individual nucleon-nucleon interactions is thus 

represented by a simple one-body potential. This 

approximation greatly simplifies the calculation of a wide 

range of nuclear structure and nuclear reaction phenomena, in 

addition to the excellent agreement with experimental data 

(1). 

The phenomenological optical model potential for nucleon-

nucleus scattering, �, is defined as [2-6]: 

���, �� � �	
��, �� � 	����, ��. ��. ��� 	���, �� � 	���� � 	�	���
��, �� �����, �� ������, ��. ��. ���              (1) 

Where 	
,�  and �
,�,��  are the real and imaginary 

components of the volume-central �	� , surface-central ��� 
and spin-orbit ����  potentials, respectively. �  is the LAB 

energy of the incident particle in ��	. All components are 

separated in energy-dependent well depths, 	
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The form factor ���, 12 , 32) is a Wood-Saxon shape 

�(�, 12 , 32) = 4
[467(

)89:;: )]                     (3) 

Where the geometry parameters are the radius 12 = �2=0>,, 
with =  the atomic mass number, and the diffuseness 

parameters 32 , � = 	, ��, � . For charged particles, the 

coulomb term 	� , as usual, is given by that of a uniformly 

charged sphere 


?(�) �@@A7/ B".⁄ ��D&�/ "./⁄ �:	�F"? 	@@A	7/ �⁄ :	�G	"?                      (4) 

With H(HI)  the charge of the target (projectile), and 

1� = ��=0> the Coulomb radius. 

In addition of the term ��,�� , the Coulomb spin-orbit term 

that is assumed to have the form: 

��,�� = (JK − 4
B) 4
LM/N/ 	[4� 	 OO� 		�(�)]	��. ��             (5) 

Where JK  is the proton magnetic moment in nuclear 

magnetons. 

We have got the (Coulomb-Nuclear) interference potential 

which is expressed as follows: 

��PQK(�, �) = 	RST(�, �) + �	�RST(�, �)             (6) 

Where: 

UVW
VX 	RST(�, �) = ��(�) + ��(�, �) − �
(�, �) +

Y−���(�, �) + ��,��(�)Z [ \R�&\&4]
�RST(�, �) = −�
(�, �) −��(�, �) +���(�, �) [ \R�&\&4]

  

Here, � for ^ = � + 1 2⁄  and −� − 1 for ^ = � − 1 2⁄  

By solving the Schrob dinger equation numerically with 

this complex potential yields a wealth of valuable 

information; it returns a prediction for the basic observables, 

namely the elastic angular distribution and polarization, the 

reaction and total cross section, and the detailed information 

of the calculation methodology that is showed in the 

reference [7]. 

The essential value of a good optical model is that it can 

reliably predict these quantities for energies and nuclides for 

which no measurements exist. Also, the quality of the not 

directly observable quantities that are provided by the optical 

model has an equally important impact on the evaluation of 

the various reaction channels. 

The dispersive optical model analysis describes the 

continuous energy variation of the nuclear mean field 

potential components depths and connection between the real 

parts and imaginary parts of the mean field by a dispersion 

relation, and so the reliable determination of the mean field is 

perfect by comparing a prediction of the cross sections with 

these are measured experimentally. 

These dispersion relations are a natural result of the 

causality principle that a scattered wave cannot be emitted 

before the arrival of the incident wave. The dispersion 

component stems directly from the absorptive part of the 

potential, 

∆d(�, �) = e
f g h(�,�I)

�A&� i�′6k&k                   (7) 

Where e denotes the principal value. The total real central 

potential can be written as the sum of a Hatree-Fock term dlm(�, �) and the total dispersion potential ∆d(�, �) 
d(�, �) = dlm(�, �) + ∆d(�, �)                 (8) 

Since h(�, �) has a volume and a surface component, the 

dispersive addition is, 

∆d(�,�) ∆d�(�,�)6∆dn(�,�)		 ∆
�(�)!(�,"�,#�)&'#n∆
n(�) (()	!(�,"n,#n)               (9) 

Where the volume dispersion term is given by 

∆	
(�) = e
f g $�(�I)�A&� i�′6k&k                  (10) 

And the surface dispersion term is given by 

∆	o(�) = e
f g $n(�I)�A&� i�′6k&k                  (11) 

In general, “(10)” & “(11)” cannot be solved analytically. 

However, under certain plausible conditions, analytical 

solutions exist. Under the assumption that the imaginary 

potential is symmetric with respect to the Fermi energy �m  

�(�m − �) = �(�m + �)                   (12) 

Where � denotes either the volume or surface term, we 

can rewrite the dispersion relation as, 

∆	(�) = B
f (� − �m)e g $��A�

(�A&�p)/&(�&�p)/ i�Ik�p     (13) 

There are many published studies for detailed analyses of 

data for the scattering state by using dispersion relations. 

Some of these studies that started from the energy variation 

of the moments of the imaginary potential have used Brown-

Rho expression and assumed that the Hatree-Fock field has 

the linear energy dependence. 

The present paper aims at presenting the dispersive optical 

model analysis (DOMA) of the protons scattering by titanium 

element nucleus and its natural isotopes and comparing the 

results with these resulted from global parametrization of the 

optical model potential and averrable experimental data 

within energy range (1-100) MeV and with calculation step of 

the previous range whose magnitude 1	MeV. 

2. Methodology 

The dispersive optical model analysis is summarized as 

follows [2-4, 8]: 

2.1. Volume Integral per Nucleon 

Determining the continuous energy variation of the volume 

integral per nucleon by using Brown-Rho expression: 
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For the central imaginary part of the nuclear mean field: 

t$��� � u	 ��&�v�/
��&�v�/6wx/                 (14) 

The imaginary part has a volume and a surface component, 

the volume component is, 

t$���� � u	 ��&�v�/
��&�v�/6wx�/

                  (15) 

So, the surface component is, 

t$%��� � t$��� � t$����                   (16) 

where u, y$ , y$� denote Brown-Rho parameters, �z is: 

�z = �pB                                      (17) 

Where, �m , the Fermi energy in MeV, that is defined as the 

energy halfway between the last occupied and the first 

unoccupied shell of the nucleus, determined from the 

experimental masses as follows: 

�p {p||{p8/�p| L}|0&L}&~�p8 L}&L}80&~
                              (18) 

Where �m6  is the negative of the separation energy of a 

nucleon from the (A+1)-nucleon system. Also, �m&  is the 

negative of the separation energy of a nucleon from the A-

nucleon system, � is the atomic mass of the incident particle. 

2.2. Depths of the Volume and Surface Absorption of the 

Mean Field 

Determining the continuous energy variation of the volume 

and surface absorption depths, 

W�(E) = J��(E) g��⁄ ,MeV                    (19) 

W�(E) = J��(E) g��⁄ ,MeV                    (20) 

Where g��, g�� can be written as follows: 

��� = 'f
D 	 "��>��∗�M 	�1 + [f#��"�� ]

B	�                  (21) 

��� = 4�	f	"��/ #����∗�M 	�1 + 4
D [f#��"�� ]

B	�               (22) 

Where 1�� = ���=T0> , 3�� , 1�� = ���=T0> , 3��  are the 

radius and diffuseness parameters of the volume and surface 

absorption. 

2.3. Volume Integral per Nucleon of Dispersive Corrections 

of the Real Part of the Mean Field 

Determining the continuous energy variation of the volume 

integral per nucleon of dispersive corrections of the real part 

of the mean field is obtained by using the dispersion 

relations: 

The total dispersive correction: 

t∆
x(�) = B
f (� − �m) g �x��A�(�A&�p)/&(�&�p)/ i�Ik�v       (23) 

The volume dispersive correction: 

t∆
x�(�) = B
f (� − �m) g �x���A�(�A&�p)/&(�&�p)/ i�Ik�v      (24) 

So, the surface dispersive correction is: 

t∆
x%(�) = t∆
x(�) − t∆
x�(�)               (25) 

2.4. Depths of the Dispersive Corrections of the Real 

Optical Potential 

Determining the continuous energy variation of the depths 

of the dispersive corrections of the real optical potential: 

The volume dispersive correction: 

∆V�(E) = t∆
x�(�) g��⁄ ,MeV               (26) 

The surface dispersive correction: 

∆V�(E) = t∆
x%(�) g��⁄ ,MeV               (27) 

So, the total dispersion potential ∆d(�, �) calculated from 

“(9)”, at � = 0. 

2.5. Depth of the Total Real Central Potential 

Determining the continuous energy variation of the depth 

of the total real central potential: 

We determine the depth from “(8)”, at � = 0, 

Assumption that the Hatree-Fock term has a Wood-Saxon 

radial shape with energy-independent geometrical parameters (�lm , 3lm) is given by 

dlm(�, �) = dlm(�)�(�, 1lm , 3lm)               (28) 

Where the depth dlm(�)  is given by the following 

parametrization: 

dlm(�) = dlm(E�)	e�	���( & �)	 	d��( �)⁄ 	¡		E ≥ E�     (29) 

Where α¤� , the slope parameter, 1¤� = �lm=4 D⁄ , radius 

parameter, dlm(E�) is the depth at Fermi energy. 

2.6. Volume Integral per Nucleon of the Real Potential 

Determining the continuous energy variation of the volume 

integral per nucleon of the real potential: 

The volume integral per nucleon of the real potential is 

given by: 

t
(�) = tlm(�) + t∆
x(�)                    (30) 

Where tlm(�) , the volume integral per nucleon of the 

Hartree-Fock that can be written as follows, 

J¤�(E) = dlm(�) ∗ �lm                     (31) 

Where �lm, is given by 
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�lm � 'f
D 	

"¥p>
��∗�M 	 �1 � [

f#��
"�� ]

B	�                (32) 

2.7. Radius Parameter of the Total Real Central Potential 

Determining the continuous energy variation of the radius 

parameter of the Woods-Saxon approximation to the full 

potential. 

We determine the radius parameter of the Woods-Saxon 

approximation to the full optical potential from the equation: 

1
���D � �¦3
�B1
��� � [ D'f]�
���=T=S � 0     (33) 

Where 3
 , diffuseness parameter and �
��� , can be 

determined from the relation: 

�
��� � t
��� d���⁄                   (34) 

So, the radius parameter will be: 

r��E� � R��E�	A&4 D⁄                    (35) 

2.8. Comparing with the Global Parameterizations of the 

Optical Model Potential 

After calculating the depths, the geometrical parameters 

and the volume integral per nucleon of the mean field 

components, we have compared them with global 

parameterizations of the optical potential whose calculations 

have been performed in the DOMACNIP program: 

1. Becchetti and Greenlees [9], its coding in the program 

BG, for 

E ≤ 50	Mev, Z® = (20 − 92), A® = (40 − 238)  
2. Menet et al [10], its coding in the program ME, for 

30 ≤ E ≤ 60	Mev, Z® = (20 − 82), A® = (40 − 208) 
3. Varner et al [11], its coding in the program CH, for 

16 ≤ E ≤ 65	Mev, Z® = (20 − 83), A® = (40 − 209) 
4. Koning and Delaroche [2], its coding in the program 

KD, for 

0.001 ≤ E ≤ 200	Mev, Z® = (12 − 83), A® = (24 − 209) 
While the values of a spin-orbit coupling term of the mean 

field in our calculations are: 

V�´ = V�´µ¶ , W�´ = 0, r�´ = r�´µ¶ , a�´ = a�´µ¶ 

Also, for the value of coulomb radius parameter, r¸ = r¸µ¶ 

3. Results and Discussion 

The results According to DOMACNIP program are 

summarized as follows: 

3.1. Input Parameters 

The values of the input parameters of the titanium element 

nucleus and its natural isotopes are showed in the (Table 1): 

Table 1. The input values of the constant mean field parameters and the changed atomic mass numbers, relative abundance [12-15]. 

Constant Input Parameters 

Brown-Rho Parameters Geometrical Parameters Volume and Surface Absorption ¹º, »¼½  ¹¾½ ,»¼½  ¿,»¼½. ÀÁÂ  ÃºÄ, ÀÁ  ÃºÅ, ÀÁ  ÆºÄ, ÀÁ  ÆºÅ, ÀÁ  

5.96 39.5 -112.9 1.32 1.22 0.51 0.62 

 

Hartree-Fock Parameters Diffuseness Parameter 

ÃÇÈ, ÀÁ  ÆÇÈ, ÀÁ  ÉÇÈ  ÊÇÈ(ËÈ),»¼½  Æ½, ÀÁ  

1.24 0.7 0.58 -57.9 0.72 

 

(Projectile-Target) Parameters Maximum Energy ÌÍ  ÎÍ	(ÆÁÏ)  ÌÐ  ËÑÆÒ(»ÆÓ)	»¼½  

1 1.0078 22 100 

 

Changed Input Parameters 

Titanium nucleus ÔÕ	(ÖÆ)  Natural Titanium Isotopes ÔÕ − ×Ø  ÔÕ − ×Ù  ÔÕ − ×Ú  ÔÕ − ×Û  ÔÕ − ÜÝ  A®	(amu)  47.867 45.9526 46.9518 47.948 48.9479 49.9448 

Eà	(MeV)  -9.0389 -7.7561 -8.6481 -9.1014 -9.6517 -10.1135 

Relative Abundance 8.25% 7.44% 73.72% 5.41% 5.18% 

3.2. Depths of the Mean Field 

The depths of the mean field are compared with these resulted from global parameterizations of the optical potential within 

the energy range (1 − 100)MeV and with calculation step of the previous range whose magnitude 1	MeV, as they are showed 

in the Figures 1-3. 
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Figure 1. Depth of the real part of the mean field potential as a function of proton energy (the red line) compared with these resulted from global 

parametrization of the optical model potential. 

 

Figure 2. Depth of the volume component of the imaginary part of the mean field mean field potential as a function of proton energy (the red line) compared 

with these resulted from global parametrization of the optical model potential. 

 

Figure 3. Depth of the surface-peaked component of the imaginary part of the mean field mean field potential as a function of proton energy (the red line) 

compared with these resulted from global parametrization of the optical model potential. 

3.3. The Real Radius Parameter of the Mean Field 

The real radius parameter of the Wood-Saxon approximation to the mean field potential with its HF approximation, within 

the energy range ��! � 100�	MeV and with calculation step of the previous range whose magnitude 1	MeV, as it is showed in 

the Figure 4. 

 

Figure 4. The energy dependence of the radius parameter of the Wood-Saxon approximation to the mean field potential with its HF approximation. 
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3.4. Total Reaction Cross Section 

The total reaction cross sections are compared with these 

resulted from global parameterizations of the optical potential 

and with available experimental data [16, 17], and are in 

�fmB � 10	mb�, as it is showed in the Figure 5. There are 

excellent agreement with the experimental data and the global 

parametrization of the optical potential according to our 

calculations. 

 

Figure 5. The energy dependence of the �ã � ä�	
�'å,æ#Tç�#\� � total cross section (the red line) compared with experimental values and with these resulted from 

global parametrization of the optical model potential. 

3.5. Differential Cross Sections and Polarization for 

Selected Energy 

The differential cross sections and polarization for selected 

energy compared with these resulted from global 

parameterizations of the optical potential, as which are 

showed in the Figures 6-9. There is an excellent agreement 

with the global parametrization of the optical model potential 

according to our calculations. 

 

Figure 6. Dependence of the �ã � ä�	
�'å,æ#Tç�#\� � Coulomb, elastic differential cross sections and ��� �⁄ � ratio upon the center-of-mass scattering angle, for 

�è#é � 16	��	. 

 

Figure 7. Dependence of the �ã � ä�	
�'å,æ#Tç�#\� � elastic differential cross section upon the center-of-mass scattering angle (the black line) compared with 

these resulted from global parametrization of the optical model potential, for �è#é � 16	��	. 
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Figure 8. Dependence of the �ã � ä�	�'å,æ#Tç�#\� � ��� �⁄ � ratio upon the center-of-mass scattering angle (the black line) compared with these resulted from 

global parametrization of the optical model potential, for �è#é � 16	��	. 

 

Figure 9. Dependence of the �ã � ä�	
�'å,æ#Tç�#\� � polarization upon the center-of-mass scattering angle (the black line) compared with these resulted from 

global parametrization of the optical model potential, for �è#é � 16	��	. 

4. Conclusion 

The important conclusions can be shown as follows: 

i. Our result according to the dispersive optical model 

analysis of the proton scattering by titanium element 

nucleus and its natural isotopes have been drawn for 

constant input value of the mean field parameters using 

DOMACNIP program that has been designed for that 

purpose. 

ii. Our calculation within the energy range �1 �
100�MeV  and with calculation step of the pervious 

range whose magnitude 1	MeV  of the continuous 

energy variation of the depths of the real and 

imaginary parts of the mean field were compared with 

these resulting from global parameterization of the 

optical model potential. In addition to continuous 

energy variation of the real radius parameter of the 

Wood-Saxon approximation to the mean field potential 

with its Hatree-Fock approximation of the nonlocal 

potential within the energy range ��! � 100�MeV. 

iii. Our prediction of the total reaction cross section data 

within the energy range �1 � 100�	MeV  and 

differential cross sections, polarization data for 

selected energy showed excellent agreement with 

available experimental data and with these resulted 

from global parameterization of the optical model 

potential and thus more reliable for calculation the 

cross sections of unknown interactions of elements 

nuclei and their isotopes. 
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